
 
USDOT Region V Regional University Transportation Center Final Report 

 

 

 

 

IL IN 

WI 

MN 

MI 

OH 

NEXTRANS Project No. 143PUY2.1 

Driving Simulator Based Interactive Experiments: Understanding 
Driver Behavior, Cognition and Technology Uptake under Information 

and Communication Technologies 

By 

Shubham Agrawal 
Ph.D. student, School of Civil Engineering 

Purdue University 
shubham@purdue.edu 

 
and 

 
Dong Yoon Song 

Ph.D. student, School of Civil Engineering 
Purdue University 

song50@purdue.edu 
 

and 
 

Srinivas Peeta 
Jack and Kay Hockema Professor in Civil Engineering 

Purdue University 
peeta@purdue.edu 

 
and 

 
Irina Benedyk 

Ph.D. student, School of Civil Engineering 
Purdue University 

birina@purdue.edu 
 
 

 

http://www.purdue.edu/discoverypark


DISCLAIMER 

Funding for this research was provided by the NEXTRANS Center, Purdue University under Grant 
No. DTRT12-G-UTC05 of the U.S. Department of Transportation, Office of the Assistant Secretary 
for Research and Technology (OST-R), University Transportation Centers Program. The contents 
of this report reflect the views of the authors, who are responsible for the facts and the accuracy 
of the information presented herein. This document is disseminated under the sponsorship of 
the Department of Transportation, University Transportation Centers Program, in the interest of 
information exchange. The U.S. Government assumes no liability for the contents or use thereof. 



 
USDOT Region V Regional University Transportation Center Final Report 

TECHNICAL SUMMARY 

NEXTRANS Project No 019PY01Technical Summary - Page 1 

NEXTRANS Project No.  143PUY2.1      Final Report, 31st January 2018

Title 
Driving Simulator Based Interactive Experiments: Understanding Driver Behavior, Cognition and 
Technology Uptake under Information and Communication Technologies 

Introduction 
Advanced Traveler Information Systems (ATIS) and in-vehicle information systems (IVIS) are becoming an 
integral part of the current driving experience. Although information through in-vehicle technologies 
provides assistance to drivers with diverse travel-related information (for example, real-time traffic 
information, weather forecast, and warning and emergency alerts), it also entails additional cognitive 
workload that can cause safety hazards and behavioral inconsistencies, especially if the information 
delivery mechanism is not well-designed. Thus, understanding the impacts of real-time information from 
multiple sources (such as variable message signs, GPS, radio, etc.) on drivers’ cognition and its effects on 
the decision-making process is essential for designing futuristic IVIS. In addition, it is desired that a driver 
would fully comply with such information to improve transportation system performance.  

In this study, we develop interactive driving simulator experiments to understand the relationship of 
drivers’ physiological data on their perceptional and psychological states as well as their revealed route 
choices. These experiments use a real road network from Indianapolis, Indiana, for which participants 
determine route preferences based on real-time information provision as well as route attributes (e.g., 
freeway, number of turns, stops, length, and so on). Various information scenarios with multiple 
disseminating sources are prepared to examine participants’ perceptional and psychological states 
depending on different information characteristics (e.g., amount, source, or content). High-definition 
cameras and biosensors (i.e., electroencephalography, electrocardiography, and eye tracker) are 
integrated with the driving simulator experiments to observe participants’ physiological data. The real-
time coordination between the multiple biosensors, high-definition cameras, and driving scenarios 
enables to understand drivers’ dynamic cognitive states during the driving period depending on the 
presented cues (such as real-time travel information). Based on the data collected, we develop behavior 
models to investigate the impacts of cognitive effects induced by real-time traffic information along with 
situational factors (such as trip purpose and traffic congestion), real-time travel information 
characteristics (such as amount, content and source) and individual driver characteristics (such as age, 
gender and education) on the driver route choice decision-making process. 

Findings 
The key findings are as follows: (i) the stress from information overload or information-induced confusion 
can weaken the influence or effectiveness of information to alter travelers’ route choice; (ii) if travelers 
have more clarity on the ambient traffic conditions on the alternative route (higher cognitive 
decisiveness), they are more likely to choose it when it has better traffic conditions; and (iii) if a traveler 
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feels the information is favorable (for example, available alternative route has a lower expected travel 
time), he/she would switch to that route.  

The key contributions of this project are: (i) demonstrating the causal relationships among the factors that 
lead to the psychological effects of real-time travel information, (ii) explicitly eliciting the latent 
psychological factors from drivers’ revealed behavior to understand the holistic structure of the benefits 
of real-time travel information, and (iii) quantifying the driver cognitive state and workload using 
physiological data acquired from biosensors (such as electroencephalography, electrocardiography, and 
eye tracker) using the carefully designed interactive driving simulator experiments.  

Recommendations 
The results illustrate the effectiveness of using data from the interactive driving simulator experiments 
designed in this study to understand the multiple dimensions of driver response behavior under real-time 
information provision, beyond those linked to travel time savings. The study results also demonstrate the 
efficiency of using biosensors to infer on driver cognitive states. Based on the surveys and biosensors used 
in this study, the qualitative and psychological implications of information can be analyzed by seamlessly 
collecting information that can enable revealing the causal relationships and factors. The use of an 
interactive driving simulator has practical merits compared to conducting driving experiments on a public 
road network. First, it provides flexibility to build a variety of scenarios in terms of network characteristics 
(highway geometry and road surface characteristics), information characteristics (amount, sources, and 
content), and travel context (demand levels, accidents, and weather conditions). Second, it is safer and 
entails much lower risk than field experiments. Third, it enables controlling for factors so that 
understanding the role of specific factors can be analyzed. The study insights can aid vehicle 
manufacturers to design IVIS and transportation planners to develop strategies that reduce cognitive 
workload for real-time travel information provision and enhance the effectiveness of travelers’ route 
choice decision-making behavior by incorporating the psychological effects of real-time travel information 
provision. 
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CHAPTER 1. INTRODUCTION 
1.1 Background and motivation 

Real-time travel information provision under Advanced Traveler Information Systems 
(ATIS) can significantly impact network traffic flow evolution by influencing drivers’ route choice 
decisions. Recent advances in information and mobile communication technologies have enabled 
the delivery of real-time information through personal devices (for example, smartphones) and in-
vehicle information systems (IVIS) (for example, integrated navigation system and vehicle 
dashboard). These systems, unlike public information infrastructure (for example, variable 
message sign and roadside sign boards), can provide personalized real-time travel information to 
drivers. Thus, drivers can receive both travel-related information (for example, route navigation, 
real-time traffic information, weather forecast, and collision warning and emergency alerts) and 
non-travel related information (for example, phone calls, emails and vehicle diagnostics) through 
multiple sources at different times and locations, and in different sensory modalities (for example, 
visual, auditory and tactile) and formats (for example, text, image, verbal, non-verbal alert sounds 
and vibration). Real-time travel information enables drivers to make informed travel decisions (for 
example, route choice) that have tangible (for example, travel time savings) and cognitive (for 
example, cognitive decisiveness and emotional relief) benefits. But, it also may have negative 
implications on driver cognitive states during perception and processing of information as it entails 
sharing of cognitive resources while engaged in the multitasking driving activity.  

The impacts of real-time travel information on driver behavior related to mode choice, 
departure time choice and route choice have been well-studied in the literature (Dia, 2002; 
Grotenhuis, Wiegmans, & Rietveld, 2007; Peeta & Yu, 2004; Thorhauge, Haustein, & Cherchi, 
2016; Yu & Peeta, 2011). Several studies have investigated the day-to-day and within-day 
evolution of driver behavior and flow in traffic networks (L. Han, Sun, Wu, & Zhu, 2011; Jha, 
Madanat, & Peeta, 1998), and its impacts on transportation network performance (Mahmassani & 
Jayakrishnan, 1991). Some studies have shown the benefits of IVIS to improve driver’s situational 
awareness, and avoid fatigued and drowsy driving (Gershon, Ronen, Oron-Gilad, & Shinar, 2009; 
Nijboer, Borst, van Rijn, & Taatgen, 2016). However, driving is inherently a multitasking activity 
that requires drivers to perform essential functions (for example, steering, accelerating and 
braking) while interacting with the travel environment. The provision of real-time information can 
result in cognitive overload which can jeopardize drivers’ performance, both in terms of driving 
and information processing. Previous literature has shown that interacting with information 
systems while driving increases driver’s cognitive workload that can reduce the effectiveness of 
the disseminated information which subsequently affects the route choice decision-making 
process, and cause distraction that can result in negative safety implications (Birrell & Young, 
2011; Dong, Hu, Uchimura, & Murayama, 2011; Jamson & Merat, 2005; Ranney, Scott Baldwin, 
Smith, Martin, & Mazzae, 2013; Briggs, Hole, & Land, 2016). In addition, several inconsistencies 
in information may arise due to the difference in information characteristics from multiple sources 
(for example, delivery format, content, and latency) that can result in information-based confusion 
in the context of the route choice decision-making process. Real-time information available under 
connected and autonomous transportation technologies may further aggravate the information 
overload of drivers, if the technology developers and information providers fail to consider the 
cognitive capabilities of human drivers while designing information dissemination strategies. 
Hence, it is imperative to investigate the impacts of real-time travel information on driver 
cognition, and consequently driver route choice behavior. 
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Most of the proposed route choice behavior models in the literature incorporates road/route 
characteristics (such as road type), experiential generalized travel costs (such as experienced travel 
time and fuel consumption), population heterogeneity in terms of individual factors (such as 
sociodemographic characteristics, trip purpose), and real-time information (Agrawal, Zheng, 
Peeta, & Kumar, 2016; P. Bonsall, 1992; Dia, 2002; K. Han, Friesz, & Yao, 2013; Peeta & Yu, 
2005; Yu & Peeta, 2011). Some studies have also shown the impacts of the accuracy of information 
(Ben-Elia, Di Pace, Bifulco, & Shiftan, 2013), content of information (Peeta, Ramos, & Pasupathy, 
2000) and past experience with information (Ben-Elia, Erev, & Shiftan, 2008) on driver route 
choice behavior. Hato et al. (1999) studied the route choice behavior under provision of real-time 
travel information through multiple information sources. Several studies have also analyzed the 
compliance of drivers towards real-time travel information (Chen, Srinivasan, Mahmassani, 
Engineering, & Jr, 1999; Srinivasan & Mahmassani, 2000), and the value of real-time travel 
information for the drivers (Chorus, Arentze, Molin, Timmermans, & Van Wee, 2006; Kim & 
Vandebona, 1999; Levinson, 2003; Zhang & Levinson, 2008). Past literature has also studied the 
effects of timing of information provision on drivers’ route choice behavior, that is, pre-trip 
information (Jou, 2001; Khattak, Polydoropoulou, & Ben-Akiva, 1996), en route information 
(Srinivas Peeta & Yu, 2005; Polydoropoulou, Ben-Akiva, Khattak, & Lauprete, 1996), and post-
trip information (Lu, Gao, & Ben-Elia, 2011). However, most of the proposed driver route choice 
behavior models that include the effects of real-time travel information (for example, Peeta and 
Yu, 2005) are limited in their capability to factor human cognition, and assume that drivers are 
able to seamlessly perceive, process and utilize real-time information while performing an already 
cognition-heavy driving task (Ben-Elia & Avineri, 2015).  

In terms of qualitative aspects of information perception, Bonsall (2004) and Chorus et al., 
(2006b) show that traveler route choice decisions rely on the subjective perception of the provided 
information associated with traveler attributes and situational factors. That is, even if the same 
information is provided to travelers under similar traffic conditions, their route choice decisions 
may differ because the information is perceived and used differently by different travelers. 
Following this thread, different approaches have been used to study the effects of real-time travel 
information by factoring the qualitative aspects of information perception. For instance, well-
defined behavioral theories on the limitations or distortions in human cognition and reasoning, 
such as bounded rationality (Gao, Frejinger, & Ben-Akiva, 2011), prospect theory (Razo & Gao, 
2013), and regret theory (Chorus, Arentze, & Timmermans, 2008), are leveraged to develop 
modeling structures that account for the qualitative aspects of travelers’ behavioral responses to 
real-time travel information. However, an underlying assumption in these studies is that travelers 
can seamlessly process information that they receive in a driving environment; that is, human 
factors such as cognitive load are not factored in the response. More importantly, no study has 
explicitly addressed the role of information perception in the decision-making process which can 
possibly lead to challenges such as information overload and information-induced confusion. 
These perception aspects are fundamental components of the driver’s real-world travel 
environment related to route choice decision-making, and need to be holistically considered along 
with driver attitude towards information and past travel experience, to enable realism in inferring 
driver behavior under information provision in the inherently interactive multitasking driving 
environment. In summary, past literature have primarily focused on the tangible benefits of real-
time information (such as travel time savings and reduction in travel time uncertainties) on route 
choice behavior, and have at large overlooked the importance of human factor aspects and 
psychological effects in drivers’ route choice decision-making process. This study proposes the 
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concept of an information-related psychological process to explicitly illustrate the role of 
information perception from a psychological standpoint and its implications for route choice 
decision-making. 

Recent advances in in-vehicle driver monitoring systems have enabled non-intrusive real-
time tracking of several physiological factors (such as eye blinking and gazing behavior, heart rate, 
facial expressions, etc.) that can be used to infer driver cognitive state, which includes cognitive 
workload, distraction, and level of engagement, using psychophysiological analysis. Past studies 
have developed methods to estimate drivers’ distraction and cognitive workload associated with 
information systems using eye activity behavior such eye fixation (that is, maintaining the visual 
gaze on a single location), saccade rate (that is, fast eye movement that occurs when the visual 
attention shifts from one location to another), and blink rate (that is, semi-automatic rapid closing 
of the eyelid) to infer driver cognitive state such as cognitive workload, level of fatigue or 
drowsiness, and level of attention and situational awareness (Benedetto et al., 2011; Faure, 
Lobjois, & Benguigui, 2016; Heikoop, de Winter, van Arem, & Stanton, 2017; Liao, Zhang, Zhu, 
& Ji, 2005; Palinko, Kun, Shyrokov, & Heeman, 2010; Ranney et al., 2013). Several studies have 
developed models based on facial expressions (for example, yawning behavior, head movements 
and eye blinking behavior) to estimate driver’s fatigue level (Ji, Zhu, & Lan, 2004; Liao et al., 
2005). In addition, several models have been proposed in the literature to use facial expressions 
for estimating human emotional state (Bassili, 1979; Busso et al., 2004). Several experimental 
studies have used data from electroencephalogram (EEG) and electrocardiogram (ECG) to 
determine driver’s cognitive workload, driver distraction, fatigue level and stress level in driving 
context, and their effects on driving performance (Bos, 2006; Brown, Johnson, & Milavetz, 2013; 
Haak, Bos, Panic, & Rothkrantz, 2009; Lin, Wu, Jung, Liang, & Huang, 2005). From 
neurocognitive science, empirical models have been developed to estimate cognitive workload, 
drowsiness and engagement level for general activities using experimental data (Berka et al., 2005, 
2007). Some studies used secondary task analysis and self-reported survey-based methods to 
determine driving performance under the provision of real-time information while driving (Faure 
et al., 2016; Harbluk et al., 2013; Ranney et al., 2013). In summary, past literature has focused on 
developing psychophysiological models using variety of biosensors (both in isolation and in 
combination) to estimate several aspects of driver’s cognition, but most of the studies focused 
primarily on driving performance from safety implications perspective. In this context, this study 
develops a psychophysiological model to capture the cognitive effects induced by real-time 
information using physiological indicators and their impacts on driver route choice behavior. 

Driving simulators are used to study driver behavior in a safe and controlled environment. 
Past literature have used driving simulators to study fatigued, drowsy and inattentive driving 
(Charlton and Starkey, 2013, 2011; Dong et al., 2011; Rimini-Doering et al., 2001), impacts of 
interactions with IVIS on driver cognitive workload and distraction (Benedetto et al., 2011; Birrell 
& Young, 2011), working memory and cognitive load using secondary task methods (Heikoop et 
al., 2017; Nijboer et al., 2016; Ross et al., 2014), route choice behavior (Ben-Elia et al., 2008), 
role of assistive technologies for people with diverse abilities (Lancioni & Singh, 2014), 
automobile collisions (Mcmanus, Cox, Vance, & Stavrinos, 2015), and for driving and non-driving 
task learning purposes (Pam Goheen, 2011; Ritterfeld, 2005). This study conducts interactive 
driving simulator experiments to collect a variety of data (for example, driving performance, self-
reported surveys, physiological indicators, etc.) to analyze driver route choice behavior under real-
time information provision from the perspective of driver cognition. This study develops a hybrid 
route choice model incorporating psychological effects (which include cognitive burden, cognitive 
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decisiveness and emotional relief) induced by real-time travel information as latent variables, 
which uses indicator variables based on a self-reported survey. The effects of the situational factors 
(such as trip purpose and traffic congestion), real-time travel information characteristics (such as 
amount, content and source), and individual driver characteristics (such as age, gender and 
education) are also incorporated in the model. Then, this study performs psychophysiological 
analysis to estimate driver cognitive state in a tangible manner using driver physiological 
indicators under real-time information, and analyze its impact on driver route choice behavior. 
1.2 Organization of the report 

The remainder of the report is organized as follows. CHAPTER 2 discusses the design of 
driving simulator experiments. CHAPTER 3 presents a hybrid route choice model incorporating 
the psychological effects of real-time information on route choice decision-making process. 
CHAPTER 4 discusses the impacts on driver cognition, estimated using measured physiological 
indicators, under real-time information. CHAPTER 5 summarizes the research findings and 
insights, and discusses future research directions. 

 
CHAPTER 2. DRIVING SIMULATOR EXPERIMENTS 

2.1 Purdue University driving simulator laboratory 
The driving simulator laboratory at Nextrans Center, Purdue University (illustrated in 

Figure 1) is a state-of-the-art experiment facility to capture human factors under dynamic 
transportation environments (Nextrans Center, 2015). The driving simulator consists of key 
driving components such as dashboard, steering wheel, ergonomic driving cockpit, three wide 
screens, etc. (OKTAL, 2017). This study includes two interactive driving simulator-based 
experiments (with and without integrated biosensors capturing participating drivers’ physiological 
data) to analyze the cognitive effects induced by real-time travel information provision while 
driving, and its impacts on the route choice decision-making process.  

 
Figure 1. Interactive driving simulator at Nextrans Center, Purdue University 

A realistic road network of northern Indianapolis, IN (as shown in Figure 2), is constructed 
as a terrain of the driving simulator-based experiments. The experiment scenarios are designed to 
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capture the effects of traffic conditions (such as congestion level and accidents) and real-time 
information characteristics (such as amount, content, source and sensory modality). While 
traveling from a fixed origin to destination, participating drivers can choose/change their route 
between two options (freeway and arterial options) at three decision-making points (Figure 2). 
While a route choice decision at the first decision-making point (A) is depending on driver’s initial 
preference and prior experience (if any), the other two route choice decisions (at B and C) are also 
influenced by real-time travel information provided. To ensure realistic driving environment, the 
driving simulator is integrated with a microscopic traffic simulator to generate dynamic and 
responsive ambient traffic which is consistent with the experiment scenario provided. 
Additionally, a point-based compensation reward system is developed to overcome the common 
criticisms of the driving simulator-based studies, that is, an intent for the participant driver to 
complete his/her trip within the assigned time limit, and not to treat the simulator as a game and 
follow the traffic rules as in real-world.  

 
Figure 2. Map of the network for driving simulator experiments 

A pre-experiment survey is designed to collect data on participant’s individual 
characteristics such as sociodemographic data (such as age, gender and education), and attitude 
towards and experience with real-time information systems (such as trust and familiarity). Based 
on the assigned experiment scenario, the participant drives three to five experimental runs. A stated 
preference survey is conducted before each experimental run to collect driver’s pre-trip route 
choice preference. During each experimental run, data is collected on driver’s route choices, 
disseminated real-time information characteristics, traffic conditions, and micro-level driving 
performance (such as steering wheel angle, brake/gas pedal pressure, and lane and headway 
maintenance). During each experimental run, data related to information perception and cognitive 
effects related to the provided information are collected using self-reported surveys shortly after 
making information-aided route choice decisions while pausing the simulation. After the trip is 
over, a post-run survey is conducted to capture drivers’ satisfaction and travel experience.  

Driver’s physiological data (such as eye movements, brain electrical activity and heart rate) 
is collected using biosensor devices: (i) B-Alert X24 Wireless Headset system that includes EEG 
and ECG (Advanced Brain Monitoring, 2017); and (ii) wearable eye-tracking glasses 
(SensoMotoric Instruments, 2017). The micro-level driving performance and physiological data 
are used to estimate driver’s cognitive state (such as cognitive workload, distraction, and level of 
engagement) under real-time travel information provision while driving. Such behavioral and 
physiological data obtained from the experiments can be a valuable source to understand traveler 
behavior and its underlying psychological factors especially under information-rich driving 
environments.  
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2.2 Experiment Procedure 
The participants were recruited among the staffs and students in Purdue University, and 

people living in Greater Lafayette area and Indianapolis. A web page link 
(www.purdue.edu/drivingsimulator) with experiment description was disseminated with 
advertising emails, flyers, and postcards, allowing interested participants to access more detailed 
information about the experiments. Participants of experiments with integrated biosensors are 
asked their history of motion sickness, mental or physical impairment, status of regular medication, 
and whether they wear corrective glasses to qualify for participation.  

The qualified participants schedule a time for participation using an online portal or by 
contacting the NEXTRANS Center through email or phone.  Participants are required to complete 
a pre-experiment survey, which includes questions on participants’ sociodemographic 
characteristics, attitudes towards and experiences with real-time travel information and travel 
preferences before they come to the driving simulator laboratory. On completion of the survey, the 
participants are asked to provide an email address or phone number, which confirms participant’s 
completion of the survey. For experiment with integrated biosensors, the participant needs to take 
the following preparatory actions before coming to the center: (i) Wash hair and do not use any 
hair products on the day of experiment; (ii) No medication for at least 8 hours prior to the 
experiment, (iii) No caffeinated food or beverage should be consumed for at least 8 hours prior to 
the experiment. Upon arrival, participants provide written consent to participate in experiment. 
Participants are informed that, in due course of the experiment, if they are not comfortable they 
can withdraw from participating at any time. The steps of experiments are presented in Figure 3.   

The purpose and procedure of the experiment are explained to the participants before 
starting the experiments. The participants are specifically asked to drive just as they drive in real 
world rather than representing the expected best driving behavior or treating the simulator driving 
as a game. This is critical for the experiment as there is a possibility that participants may tend to 
be artificially more compliant or less responsible in simulation than in their usual driving.  

Before participants drive in the simulator, we introduce the characteristics of road network 
including origin-destination, available routes, and route choice decision-making points. Then, a 
practice session is conducted with two objectives: (i) to ensure their familiarity with driving in 
simulator environments; and (ii) to construct a desired level of familiarity for a participant by 
controlling certain aspects of practice session such as trip route, availability of GPS, etc. In 
addition, during the practice session, the participants are monitored if they are feeling motion 
sickness or any other uncomfortableness, which leads to termination of the experiment.  
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Figure 3. The steps of driving simulator experiments 

 
After practice session, the participants are equipped with biosensor devices, which includes 

EEG and ECG for the experiments with integrated biosensors. This step requires the application 
of conducting gel between the skin and EEG/ECG sensors. The sensor impedances are calibrated 
and validated, and re-adjustment of sensor locations are made if the quality of sensor data is not 
satisfactory. Then, baseline tests are performed by participants to establish baseline metrics 
(cognitive workload and engagement) to analyze biosensor data obtained from driving simulator 
experiments. These tests consists of three tasks: 3-choice psychomotor task (duration is 
approximately 7 minutes), eyes open (duration is approximately 6 minutes), and eyes closed 
(duration is approximately 6 minutes). A summary of the performed baseline tests is presented in 
Table 1. In each task, participants are required to respond as quickly as they can to different kinds 
of stimuli (visual and auditory). The brain activity during these tasks is used to define low and 
high state of participants’ alertness or engagement. In addition, baseline tests are designed to assess 
individual brain activity (cognitive workload) while performing easy problem-solving tasks. Next, 
participants are equipped with eye-tracker device and it is calibrated to achieve satisfactory data 
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Route introduction
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Driving baseline test
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quality. Then, participants are asked to perform a driving baseline test to establish brain response 
to simple driving tasks. The road network they drive in the driving baseline test is the same network 
that they will drive during experimental runs but without traffic. In this test, participants should 
follow simple driving instructions presented on a screen (such as “Maintain Speed Limit” or “Turn 
Left onto Meridian Street”).  

The participants need to complete five experimental driving runs in experiment without 
biosensors and three experimental driving runs in the experiment with integrated biosensors. 
Before and after each experimental run, the participants are asked to fill out a short survey related 
to their route preferences (Pre-run surveys) and their satisfaction and travel experience (Post-run 
surveys). In each run, different real-time travel information are provided to participants based on 
the assigned information scenarios. For the driving simulator experiments without integrated 
biosensors, another set of questions regarding information perception (Within-run surveys) are 
asked shortly after making information-aided route choice decisions during the experimental runs. 
Participants are required to take a five-minute break between two consecutive experimental driving 
runs. In the experiments with integrated biosensors, wearable eye-tracker device is removed after 
each run to allow the participant to move freely during the break. Before the beginning of a new 
run, the eye-tracker device should be re-applied and calibrated. 

 
Table 1. Summary of baseline tests  
Name of task Duration 

(minutes) 
Activity Purpose 

B-Alert baseline test 
3-choice 
psychomotor 
task 

7 Recognize shapes 
demonstrated on the screen 
and react accordingly 

Capture brain activity 
while performing basic 
problem-solving activity 

Eyes open 
task 

6 React to visual stimuli as soon 
as possible by pressing a key 

Capture brain reaction to 
visual stimuli 

Eyes closed 
task 

6 React to auditory stimuli as 
soon as possible by pressing a 
key 

Capture brain reaction to 
auditory stimuli 

Driving baseline test 
Driving task 15 Driving in experimental 

network without traffic, while 
following simple instructions 
(e.g. maintain speed limit, turn 
left, etc.) 

Capture brain activity 
while performing basic 
driving tasks 

 
After the experiments, participants are compensated by cash in both experiments, ranging 

from $10 to $60. The total compensation is calculated by a developed point-based reward system 
factoring the number of runs completed and realistic driving performance. The total compensation 
is also reduced for treating the simulation as a game and for excessive speeding and/or traffic 
violations.  
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CHAPTER 3. ROLE OF PSYCHOLOGICAL EFFECTS OF REAL-TIME TRAVEL 
INFORMATION IN ROUTE CHOICE DECISION-MAKING 

3.1 Objective 
This study seeks to investigate the psychological effects of real-time travel information on 

traveler route choice behavior. A behavior model incorporating the psychological states of 
travelers in relation to information, is proposed to explicitly account for the latent psychological 
effects on the decision-making process. A systematic experiment design framework using an 
interactive driving simulator integrated with a real-time microscopic traffic simulator, is used to 
conduct experiments to obtain data on routing behavior and information perception indicators.  
3.2 Conceptual framework for psychological effects of real-time travel information 

In this study, four facets of information perception – ease of comprehension, sufficiency, 
consistency, and favorableness – are specified to characterize the psychological effects of 
information provision. Ease of comprehension implies information perception in terms of 
cognitive complexity (how clearly the information is presented) and cognitive load (amount of 
information) of the provided information. Sufficiency implies information perception in terms of 
whether the provided information satisfies traveler’s information needs for informed decision-
making. Consistency represents information perception in terms of the consistency between: (i) 
the provided information and past travel experience, or (ii) information from multiple sources. 
Favorableness refers to information perception in terms of whether the provided information is 
favorable to the traveler’s trip context (for example, based on the trip purpose or destination); that 
is, travel conditions implied in the provided information are desirable for the specific trip being 
made. Based on the information perception and other explanatory factors (such as traveler 
attributes and situational factors), three psychological effects of real-time travel information – 
cognitive burden, cognitive decisiveness, and emotional relief – are assumed to affect route choice 
decision-making. Cognitive burden refers to the amount of mental effort that needs to be expended 
in processing information-related cues in the driving environment. Cognitive decisiveness refers 
to the level of awareness in comprehending the travel situation, and the level of uncertainty 
reduction in making decisions, based on the provided information. Emotional relief refers to the 
level of mental relief due to the anticipation of future outcomes, based on the provided information.  

Figure 4 illustrates the roles of the latent psychological effects (dashed lines and arrows) 
in the conventional structure of route choice decision-making process under information provision. 
These latent psychological constructs will be identified through observed indicators collected by 
driving simulator experiments. 
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Figure 4. Route choice decision-making process under real-time travel information provision  

 
3.3 Modeling approach 

To address the impacts of various contributing factors including not only observable 
explanatory factors but also unobservable psychological effects of information on traveler route 
choice, a latent variable-based approach is required. This study adopted a framework of hybrid 
choice modeling associated with latent variable modeling structure to illustrate the role of the both 
observable and unobservable factors in route choice decision-making process.  

Figure 5 depicts the proposed framework that is comprised of two sub-components: (i) a 
latent variable model to capture travelers’ psychological effects based on the associated indicators 
and the observable explanatory variables, and (ii) a random utility discrete route choice model with 
latent variables to account for the decision-making process factoring the psychological effects of 
information as well as other traditional explanatory variables. By including the latent variables in 
the discrete choice model, it is able to investigate the roles of psychological effects of real-time 
travel information in route choice behavior.  

A hybrid choice modeling framework (Walker & Ben-Akiva, 2002) based on the multiple 
indicators multiple causes (MIMIC) structure (Bollen, 2002) is adopted to investigate route choice 
decision-making with the consideration of psychological effects of information provision. The 
proposed framework consists of components: (i) a latent variable model and (ii) a hybrid choice 
model for route choice decision-making. In the latent variable model, the psychological constructs 
are inferred based on information perception indicator variables (Equation 1), while the impacts 
of other explanatory variables (such as traveler attributes, situational factors, route characteristics 
and information characteristics) on the psychological constructs are considered (Equation 2). On 
the other hand, the utility function of the proposed hybrid route choice model includes both the 
latent variables for psychological effects and observed explanatory variables (Equations 3 and 4). 
Here, the revealed route choice behavior, the dependent variable, has a binary choice: staying on 
the current route or switching to the alternative one. 
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Figure 5. Conceptual framework of hybrid route choice modeling 
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 (4) 

𝑍𝑍𝑛𝑛 is a vector of indicator variables for individual n, 𝑃𝑃𝑛𝑛 is a vector of latent variables for 
individual n, and 𝜇𝜇𝑍𝑍 is a matrix of coefficients indicating factor loadings. 𝛾𝛾𝑃𝑃 is the coefficient 
vector for the other (observed) explanatory variables 𝑋𝑋𝑛𝑛  which include traveler attributes, 
situational factors, route characteristics and information characteristics. The measurement error 
𝛿𝛿𝑛𝑛𝑍𝑍  and the structural error 𝜁𝜁𝑛𝑛𝑃𝑃  are assumed to be independently and identically multivariate 
normally distributed. 𝑈𝑈𝑖𝑖𝑛𝑛 is the random utility of alternative i for individual traveler n, 𝑃𝑃𝑛𝑛  is a 
vector of latent variables for traveler n identified in the latent variable model, and 𝛽𝛽𝑃𝑃  is the 
coefficient vector of 𝑃𝑃𝑛𝑛. 𝛽𝛽𝑋𝑋 is the coefficient vector for the other explanatory variables 𝑋𝑋𝑛𝑛. The 
disturbance term 𝜀𝜀𝑖𝑖𝑛𝑛 is independently and identically Gumbel distributed. 
3.4 Results and discussion 

Participants who are at least 18 years old and holding a valid driver’s license were recruited 
from Purdue University and local communities in Lafayette and West Lafayette, Indiana. A total 
of 206 participants successfully completed the prerequisite online survey and the following on-site 
driving sessions. Since each participant executes 3 to 5 runs with diverse travel and information 
scenarios, a total of 722 observations of route choice decision-making under information provision 
are obtained from the experiments.   
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The key findings related to information characteristics and psychological constructs are as 
follows. While a higher amount of information expectedly increases cognitive burden, it helps 
travelers to have an improved cognitive decisiveness regarding the traffic situation. Cognitive 
decisiveness is also enhanced by alternative route information provision. By contrast, emotional 
relief is particularly influenced by the GPS navigation information for the alternative route rather 
than real-time travel information.  

The role of the psychological effects of information provision on the route choice decision-
making is shown to be statistically significant. Cognitive burden implies that if all other conditions 
remain equal, travelers with higher cognitive load are more likely to stay on the current route. This 
implies that the stress from information overload or information-induced confusion can weaken 
the influence or effectiveness of information to alter travelers’ route choice. By contrast, cognitive 
decisiveness has a positive impact on changing route, which means that the reduced uncertainty 
encourages route changing decisions. That is, if travelers have more clarity on the ambient traffic 
conditions on the alternative route (higher cognitive decisiveness), they are more likely to choose 
it when it has better traffic conditions. Emotional relief also has a positive influence on switching 
route to the alternative one. That is, if a traveler feels the information is favorable (for example, 
available option of alternative route with a shorter expected travel time), he/she would change to 
the route. 
Incorporating the psychological effects of real-time travel information provision can improve the 
understanding of travelers’ route choice decision-making behavior. Comprehensive experiments 
are designed using an interactive driving simulator integrated in real-time with a microscopic 
traffic simulator. The estimation results illustrate that the proposed hybrid route choice model, 
through its consideration of psychological effects, can better explain the traveler route decision-
making behavior under information provision. The roles of information perception in multiple 
dimensions and the psychological effects of information are identified and verified. The study 
results can provide system operators with insights for developing effective strategies for 
information creation and provision based on the holistic understanding of route choice behavior 
to improve system performance (such as reducing congestion).  
 

CHAPTER 4. PSYCHOLOGICAL IMPACTS OF INFORMATION ON ROUTE CHOICE 
BEHAVIOR 

Results in previous chapter show that cognitive and psychological effects induced by real-
time travel information play important roles in driver’s route choice decision-making process, 
which can have implications for transportation network operation and travel information 
management. A key limitation of presented model is that the psychological effects are considered 
as latent variables that are indirectly estimated using self-reported surveys conducted in the middle 
of the experimental runs, which can intervene with participant’s psychological state and yield 
several biases (Spector, 1994). In this context, the experiments has been modified to use integrated 
biosensors and collects physiological data in a non-intrusive and direct manner to infer on driver 
cognitive state. 

Very few studies have considered the impacts of real-time travel information that goes 
beyond the physical benefits to the drivers such as travel time savings. Reassured feeling or 
uncertainty reduction in estimated travel time by factoring the cognitive effects of information has 
not considered as impacts of real-time travel information provision. However, these modeling 
frameworks are often limited in their ability to capture the cognitive effects in a quatifiable manner 
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due to their data collection methods. For example, previous chapter presents a developed hybrid 
route choice model that incorporats psychological effects (which include cognitive burden, 
cognitive decisiveness and emotional relief) induced by real-time travel information as latent 
variables, which uses indicator variables based on a self-reported survey. Some studies have 
developed methods to estimate drivers’ distraction and cognitive workload associated with 
information systems using physiological factors such as eye blink behavior, heart rate, brain 
electrical activity, etc. (Berka et al., 2005; Brookhuis, Vries, & Waard, 1991; Brookhuis & de 
Waard, 2010; Dong et al., 2011; Faure et al., 2016; Haak et al., 2009; Ji et al., 2004), but their 
focus is limited to driving performance assessment or safety implications. 

In this context, this study aim to evaluate the efficacy of the biosensors in monitoring 
cognitive workload during complex cognitive tasks such as driving under real-time information 
provision, and identify the cognitive workload induced by information-related stresses by 
separating workload due to stresses from  driving and non-driving activities.  

Several studies (Berka et al., 2007; Harris, Schroer, Anderson, & Moeller, 2012; Johnson 
et al., 2011) concluded that EEG had the potential to be an objective measure of cognitive 
workload. Those studies reported the shift in EEG signals in response to changes in task 
complexity. Driving is a complex task that is highly engaging and requires significant amount of 
allocated recourses that can vary based on driving environments, trip purpose, secondary tasks, 
etc. Hence, if cognitive workload induced by real-time information is measuring during driving 
the multiple stresses can cause shift in EEG signals. It is possible, that perceptual processes or 
motor activity due to driving task can be captured by shift in EEG signals and not cognitive 
workload due to information stresses. In our study, we design driving simulator experiments that 
measures driver’s cognitive workload with real-time travel information provision by integration 
of EEG and eye-tracker data.  

For this purpose, physiological sensor data (from driving simulator experiments) are 
employed to analyze the cognitive effects induced by real-time travel information provision while 
driving, and their impacts on the route choice decision-making process. Then, causal relationships 
between cognitive states under real-time travel information provision, micro-level driving 
performance and driver route choice behavior are illustrated based on the collected physiological 
data.  
4.1 Methodology 

We develop a framework to describe causal relationships between cognitive effects under 
real-time travel information provision, and micro-level driving performance and driver route 
choice behavior. To do that, biosensors for physiological data collection are integrated with 
interactive driving simulator environments. Driver response to information in terms of impacts on 
driving performance and driver cognitive state under real-time travel information provision is 
analyzed. Before the experiment begins, baseline metrics are defined indicating brain response to 
basic driving tasks. During three experimental runs with different traffic and information 
scenarios, the following data is collected: (i) microscopic driving performance (such as steering 
wheel angle, brake/gas pedal pressure, and, lane and headway maintenance); (ii) experiment 
scenario details and real-time information characteristics; (iii) participant’s self-reported data 
related to information perception and driver cognitive state collected using survey after each 
experimental run; (iv) cognitive metrics based on brain activity (which include cognitive workload 
and level of engagement) using EEG; (v) heart rate using ECG; and (vi) eye movement data (such 
as gaze pattern, blink rate, fixation and saccades) from eye-tracker device.  
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Physiological factors observed using EEG and eye-tracker devices are used simultaneously 
to determine driver cognitive states and identify reason of changes in cognitive states under real-
time information provision. For example, the level of engagement recorded by EEG does not 
determine the cause of engagement. To overcome this limitation, we develop methods for 
integrating eye movement-related metrics collected by the eye-tracking device with EEG data to 
corroborate the level of engagement due to driving activity, non-driving activity and/or visual 
information. In addition, we use the survey data collected before and after each experimental run 
to verify the information perception and cognitive states of drivers estimated using EEG and eye-
tracker data. 
4.1.1 Psychophysiological data 

Drivers’ cognitive states are estimated by using psychophysiological signalsincluding 
brain activity, heart activity, and eyeball movements. Brain activity is represented by brainwaves 
which are initiated in brain cells (neurons) by electric signals in response to different stimuli. The 
brainwaves are differentiated by its location in the brain in which they are initiated (or channel), 
amplitude and frequency. In this study, brain activity characterized by two aspects: cognitive 
workload and engagement. Both cognitive workload and engagement are related to the amount of 
mental recourses being used. While cognitive workload reflects cognitive processes such as 
problem solving, integration of information, and/or analytical reasoning, engagement is 
involvement in information-gathering, visual processing, and/or allocation of attention. Hence, 
drivers’ cognitive workload can be used to diagnose driver fatigue, drowsiness and/or stress. On 
the other hand, engagement can be used as a metric of vigilance and situation awareness while 
driving. Since both cognitive workload and engagement reflect important aspects of driving 
performance, they are required to be monitored and analyzed simultaneously to avoid estimation 
errors in driver’s cognitive states under real-time travel information provision.  

The EEG and the functional magnetic resonance imaging (fMRI) are two non-invasive 
tools commonly used to measure brain activities. Although, using EEG to measure brain activity 
is usually time-consuming, EEG is chosen to measure brain activity for its flexibility and 
afforability. There are well-established approaches used to quantify brain activity including (i) 
computation of the power spectral densities, allowing to describe cognitive states that are at a high 
level (intencive problem-solving brain activy, sleeping, drowsing). (ii) ratios between different 
frequency bands, describing cognitive functions at a more detailed level (differentiate level of 
mental computational efforts, etc.), and (iii) N100 and P300 components of the event-related 
potential, capturing impacts of short events on brain activity. These approaches consider a limited 
number of (one or two) wide brainwave bands to define different cognitive states. However, this 
can lead to either misclassifications or oversimplifications of the cognitive processes. In addition, 
in previous attempts to measure cognitive workload, it was found, that the changes in brainwave 
signals follow different patterns based on the type of performed tasks. Particularly, significant 
differences were found between the tasks that require more visual sensory processing and the tasks 
that require more memory resources. To address the issues, this study adopts models developed by 
Advanced Brain Monitoring, Inc. in analyses of the collected EEG sensory data. The models have 
been tested by a series of studies in different experimental environments including vigilance tests 
(Berka et al., 2005; Johnson et al., 2011), problem solving tests (Berka et al., 2007), memory tests 
(Berka et al., 2007), and driving tests (Lei & Roetting, 2011; Wang, Chen, & Lin, 2014).  

In the models, cognitive workload is characterized by 30 variables representing electric 
signals from six channels at different frequencies. Since cognitive workload measures the 
cognitive processes associated with problem solving and decision-making, increment in level of 
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difficulty of mental arithmetic or other problem-solving tasks results in increased cognitive 
workload. In contrast, engagement is depicted by 23 variables representing electric signals from 
two channels, and is related to processes involving information-gathering, visual scanning, and 
sustained attention. Hence, engagement level is correlated with complexity level of stimulus 
processing, and amount of allocated attentional resources. Engagement does not increase with 
neither increased difficulty of mental arithmetic nor increased complexity of analytical reasoning. 
Combination of cognitive worload and engagement can illustrate most of cognitive tasks 
performed by human. 

Another psychophysiological measure that can reflect drivers’ cognitive state is a heart 
activity, in particular, heart rate and heart rate variability. The ECG sensors are used to monitor 
the heart activity. It is easily measured through a few electrodes attached to the human body and 
can be analyzed in real-time. The heart rate is defined as a number of heart beats within a fixed 
period of time. The heart rate variability is defined by variability in duration and oscillation 
patterns of heat beats. Both heart rate and heart rate variability were found to be correlated with 
cognitive workload, where heart rate is increasing and heart rate variability is decreasing with 
increase in workload.   

Although EEG and ECG are widely used for medical purposes, their use in detecting 
cognitive workload in other research domains is not very common for two reasons: (i) difficulty 
in applying sensors in a “field” studies and (ii) difficulty in analyzing the collected data. To address 
the first difficulty and increases the flexibility in usage of EEG and ECG devices, a wire-less 
headset is used in the study (Figure 6). Biosensor data is transmitted using bluetooth connection 
and stored in a designated computer, and can be analyzed in real-time as well as offline. Integrated 
software solutions associated with EEG and ECG devices are used to analyze the collected data. 
Users can access to raw data from each sensor in a graphical or spreadsheet format. In addition, 
this software package provides preliminary data processing functions including removing artifacts 
(e.g., effects from eye blinks, electrical interference by outside sources, electrical noise from 
elsewhere in the body, poor contact, etc.), and data split in brainwave bands for each sensor. 

 
Figure 6. EEG device set; (i) headset, (ii) receiver, (iii) headset equipped 

 
4.1.2 Eye-tracker video data processing  

In this section, a framework used to detect objects in eye-tracker videos and process the 
video data is discussed. The objective of this framework is to determine AOI in eye-tracker video 
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recordings to enable identification and quantification of eyeball activities while driving. The 
processing methods are based on image processing techniques. The eye-tracker video is divided 
into several frames, then each  frame can be transformed into binary image through different 
methods. The binary image can be treated as a matrix with 0 and 1, where 0 and 1 represents the 
black and white parts in the binary image, respectively. Further manipulations with binary images 
allow to identify the areas of interests (AOI). By combining the results of AOI identification and 
coordinates of eye gaze points, the duration of fixation on specific AOI (if any) can be calculated. 
This allows to understand the source of changes in driver cognitive state (due to driving of non-
driving activity or due to information provided) by identifying the objects participant is looking 
at. 

There are two categories of AOI that needed to be detect (Figure 7). First AOI category 
includes continuous objects (AOI that maintain location and size through the eye-tracker video), 
such as the TV frame, clock on the screen, rearview mirror and dashboard panel. Second AOI 
category includes discontinuous objects (AOI with varying location and size through the eye-
tracker video), such as road signs and signals. Figure 7 illustrate examples of two categories of 
AOIs. 
 

Figure 7. Examples of (i) continuous and (ii) discontinuous AOIs 
 

Figure 8 summarizes the procedure used to analyze eye-tracker video. First, an eye-tracker 
video is divided into frames. Then, the background subtraction is performed for each frame of the 
eye-tracker video followed by AOIs detection step. TV frame is first AOI that is detected for the 
following reasons: (i) it is easy to identify and available on all video frames, (ii) other continuous 
AOIs can be defined within the range of TV frame. Discontinuous AOIs, such as road signs, 
require more steps to be identified, but are also using TV frame detection as a reference. 

(i) Continuous AOI (ii) Discontinuous AOI 
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Figure 8. Procedure of eye-tracker video analysis 

 
4.1.2.1 Background Subtraction 

Figure 9 shows the flowchart of background subtraction procedure used in this study. For 
each video frame, first its brightest binary image and blue channel binary image are extracted. 
Then threshold analysis is conducted on each binary image (threshold values optimal for our 
settings are identified from several trials). Next, small objects of each binary image are removed. 
Then, two binary images combined in one image. Result of background subtraction procedure is 
presented in Figure 10. Results show that this approach allows robust identification of middle TV 
frame.  

 
4.1.2.2 Continuous AOIs detection 

To detect continuous AOIs, the first step is to calculate the TV length and width. This step 
is needed, as a scale of simulator screens varies from person to person because of variation in head 
location during driving. For each video, we calculate TV length and width once, and they can be 
used for analysis of all video frames. Figure 11 shows the steps of this procedure. Then, edge 
detection is performed on the first frame of the video by using the results from background 
subtraction procedure. Results of edge detection is presented in Figure 12. After detecting the edge 
of the binary image, lines of the edges and vertex coordinates of each line can be obtained. Those 
coordinates can be used to calculate size of TV frame. Figure 13 shows the steps of procedure of 
continuous AOIs detection. 
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Figure 9. Background subtraction procedure 

 
 
 
 
 
 
 

 
Figure 10. Results of background subtraction procedure  

 
Then, using background subtraction outcomes, vertex coordinates, and size of the TV 

frame, the location of right top corners of TV frame of the middle screen (as it always presented 
in videos) is detected, and it is used as a pivot point to locate other continuous AOI (this is possible 
as relative locations and sizes of all continuous AOI are stay the same across runs and participants).  

 
Figure 11. Steps for calculating TV length and width 
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Figure 12. Results of edge and line detections 

 
Figure 13. Continuous AOI identification procedure 

 
4.1.2.3 Discontinuous AOI detection 

To detect discontinuous AOIs that appear discontinuously through the eye-tracker video 
(such as road signs), different approaches and procedures than continuous AOIs detection are 
required. Relative sizes and colors (as they stay the same through the video) of discontinuous AOI 
are used to perform threshold analysis in object identification procedure. Figure 14 presents the 
procedure of discontinuous AOI detection. Depending on the color of AOI, different binary images 
can be used. For example, red channel binary image obtained from each frame can be used to 
identify green road signs and VMS road signs. The size of TV frame is used as boundaries that 
identify available area where discontinuous AOIs can be located (they only can be on TV screens). 
Thresholds analysis and small objects elimination are conducted on the binary image cropped  

Figure 14. Discontinuous AOI detection procedure 
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within TV frames. Figure 15 illustrates the result after the objects elimination step. The last step 
includes mapping the coordinates of identified AOI and inserting them in the original video frames. 
Figure 16 illustrates the result of the discontinuous AOI detection procedure.  

 

 
Figure 15. Results of discontinuous AOI identification after the small object elimination step 

 
Figure 16. Results of AOI detection framework 

4.1.3 EEG data processing 
A total of 110 participants (53 females, average age of 26.8 years) are successfully 

participated in the experiments. All participants are free of neurological and psychological 
disorders, and self-reported no caffeine at least 8 hours before the experiments. EEG  and ECG 
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signals were recorded with 20 and 2 channels, respectively. Before acquiring EEG data, the contact 
impedances between the EEG electrodes and the skin are calibrated by injecting a conductive gel.  

To analyze data, integrated solutions provided by Advanced Brain Monitoring, Inc. is used. 
Preliminary data processing performed by used integrated solutions including removing artifacts 
(e.g., effects from eye blinks, electrical interference by outside sources, electrical noise from 
elsewhere in the body, poor contact, etc.), and data split in brainwave bands.  

As driving is a complex task by nature, and it requires significant cognitive resources to 
perform, there is a need to separate impact of information on driver cognition from impacts of 
driving and non-driving activities when analyzing EEG data. To capture impacts of voice 
information, the baseline cognitive state is defined as a brain activity that occurred within 1 second 
and 1 second before the beginning of the voice information. To capture impacts of VMS on driver 
cognitive states, the baseline state is defined as a brain activity that occurred within 1 second and 
1 second before each time when the participant looks at the VMS (i.e., eye fixation on VMS is 
detected from eye-tracker video using data for participant eyes gazing activity and coordinates of 
discontinuous AOI, VMS road sign, using framework discussed above). The baseline cognitive 
state is defined to capture cognitive state that is consistent with driving conditions before 
information provision. The average values of cognitive workload and engagement over 1 second 
interval, measured 1 second before the beginning of the event, are used to characterize baseline 
driver cognitive state. Then the baseline cognitive values are compared with an average values of 
cognitive workload and engagement during 1st, 2nd, and 3rd seconds after beginning of voice 
information and during fixation on VMS (1 second). A complete experiment consists of four 
driving sessions: one baseline test run with no traffic and without time pressure, and three 
experimental runs reproducing realistic driving conditions. Baseline test runs are conducted under 
the same conditions across all participants. However, each experimental run is characterized by 
information scenarios (in total 8 scenarios). Due to the complexity of driving task, different driving 
conditions can be presented at the moment of information delivery. In other words, the cognitive 
state for the periods before and during information provision were not the same across participants 
in the experimental runs.  

 
Figure 17. Illustration of time intervals used to identify impacts of events on driver cognitive 

states 
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Event: Voice information

Baseline brain activity Brain activity induced by event

1 s 1 s 1 s

Event: VMS eyes fixation 

Time



26 
 

The differences in cognitive states can be attributed to: (i) information, (ii) changes in 
driving activities, (iii) changes in non-driving activities, (iv) combinations of those factors. The 
baseline test is needed to capture the impact of information when driving activity is reduced to 
minimum. Due to low level of driving stresses, driver should be able to allocate additional 
cognitive resources to process information, and hence, increased value in cognitive workload 
and/or engagement should be observed in the baseline test run. In experimental runs, however, the 
level of driving stress might be higher, and thereby, real-time travel information can lead to (i) 
missing or ignoring of information by the driver, (ii) changes in driving performance as cognitive 
resourses are channeled to information processing. In these situations, small increase or no changes 
are expected in cognitive workload, whereas the impacts on engagement can decrease if a driver 
misses or ignores the information, or increase if a driver trys to process the information. In some 
other situations where driving stress is high enough to overwhelm a driver, the decrease in 
cognitive workload and/or engagement can be expected, because he/she starts to focus only on a 
small range of driving activity to perform safe driving and will ignore any distractions from 
information.  
4.2 Preliminary results 

For a preliminary analysis is condcuted using the data from 12 participants (3 experimental 
runs per a participant) who are assigned with the same information scenario to understand the 
impacts of real-time travel information on driver cognitive states. Average values of cognitive 
workload and engagement at four different time intervals (1 second before voice information and 
1st, 2nd, and 3rd seconds of voice information) on a scale of 0 to 1 with 1 being the maximum 
cognitive workload or highest engagement are showed in Figure 18. The results indicate that the 
increases in both cognitive workload and engagement are observed in baseline runs (where low 
driving stress is expected), followed up with slight decreases in both cognitive indexes at 2nd and 
3rd seconds of voice information. This implies the impacts of voice information on driver cognitive 
states. Another noticeable observation is that the level of engagement before voice information 
provision is much lower at baseline test run compared to the following experimental runs. This is 
probably because of monotonous driving environments of driving baseline tests due to the 
distraction-free characteristics (absense of traffic-related and information-related cues).  

In addition, Figure 18 illustrates the impacts of voice information on driver cognitive states 
when driving stress is high (i.e., experimental runs). High traffic conditions are simulated in the 
scenarios of the experimental runs. However, the cognitive workload before the provision of voice 
information is very similar in both baseline runs and experimental runs, unlike the engagement 
values. After beginning of voice information (from 2nd second) an increase in cognitive workload 
and small reduction in the engagement are observed from the collected data. As cognitive workload 
and engagement are measurements of different cognitive processes shaing limited cognitive 
resources, an increase in one measurement reduces the resources available for the other. Note that 
the average value of engagement during the 3rd second of voice information (in experimental runs) 
is almost half of the value at baseline runs (1 second before the voice information), while cognitive 
workload has not experienced significant changes. In other words, our observations show 
significant decrease in driver attention as voice information begins if driving stress before voice 
information is already high. A decrease in engagement or driver attention can be attributed to route 
choice decision-making processes associated with route choice, lane choice, and other driving 
decisions that are executed with assistance of the information.  
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Figure 18. EEG metrics for 12 participants with same experiment scenario 

 
Preliminary results presenting in this chapter imply that incorporating the 

psychophysiological sensors with IVIS can help to quantify cognitive influences of information 
provision (including real-time travel information) and, hence, improve the understanding of 
drivers’ route choice decision-making behavior. It also verifies the feasibility of usage of 
psychophysiological sensors to monitor driver cognitive states under real-time information 
provision. The study results can provide infights not only for system operators in improving 
effectivness of real-time travel information provision strategies based on the holistic understanding 
of driver cognitive states, but also for car manufacturers in developing effective in-vehicle 
information delivery systems based on the implications of  psychophysiological data.  

 
CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

5.1 Summary 
In this study, we developed and advanced an interactive driving simulator experiments to 

acquire the physiological data of drivers showing their perceptional and psychological states as 
well as their revealed route choices. The proposed interactive driving simulator experiments use a 
realistic road network of Indianapolis, Indiana, so that the participants configure the attraction of 
the routes based on not only the information but also the route attributes (e.g., freeway, number of 
turns, stops, length, and so on). The experiments also consider dynamic background traffic 
demands which are enabled by integration between driving simulator and microscopic traffic 
simulation package (Transport Simulation Systems, 2008). Various information scenarios with 
multiple disseminating sources are prepared to examine participants’ perceptional and 
psychological states depending on different information characteristics (e.g., amount, source, or 
content). Lastly, HD cameras and biosensors (i.e., EEG, ECG, eye-tracker) are integrated with 
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driving simulator experiments to collect participants’ physiological data. The online coordination 
between the multiple biosensors, HD cameras, and driving scenario enables to understand drivers’ 
dynamic cognitive states during the driving depending on the real-time travel information. 

From the research point of view, we proposed a comprehensive structure to address traveler 
route choice decision-making process including psychological effects of real-time travel 
information and quantifiable cognitive workload. Drivers’ subjective perception of information 
and the consequential psychological effects and benefits are analyzed through the proposed 
structure. Specifically, the causal relationships between the latent variables representing 
psychological effects of information and other traditional explanatory variables (e.g., individual 
attributes, travel context, information characteristics, etc.) are explored in the proposed latent 
variable model. Latent psychological effects of the information are inferred based on the indicator 
variables that reflect driver’s perception of information. The analysis results imply that the 
consideration of perceptional and emotional aspects of different drivers with heterogeneous 
individual preferences, travel context and information characteristics enhances the understanding 
of drivers’ revealed route choice behavior. 

Furthermore, multiple biosensors are employed as sources of quantitative estimation of the 
psychophysiological aspects of driver cognitive states. The feasibility and usability of EEG, ECG 
and eye-tracker to infer on drivers’ cognitive states are demonstrated. This study also developed a 
framework to use data from the eye-tracker video to capture the causation of cognitive workload 
and engagement levels based on EEG data. The results illustrate drivers’ usage of cognitive 
resources in different traffic environments and indicate that drivers may not be able to process and 
use the information provided while driving stress is high. The study insights can aid vehicle 
manufacturers to design IVIS and transportation planners to develop strategies that can reduce 
cognitive workload for real-time travel information provision. 

The key contributions of this project are in (i) demonstrating the causal relationships among 
the factors that construct psychological effects of real-time travel information, (ii) explicitly 
considering the psychological values underneath drivers’ revealed route choice behavior to 
understand the holistic structure of the benefits of real-time travel information, and further, (iii) 
attempting to quantify the driver cognitive state and workload using physiological data acquired 
from biosensors (such as EEG, ECG, and eye-tracker) of the driving simulator experiments. The 
proposed modeling structure offers the ability to comprehend the overall benefits of real-time 
travel information provision involving explicit consideration of multiple dimensions of latent 
psychological effects. This can provide insights to public and/or private sector stakeholders in 
traveler information service market on developing performance measures for values of real-time 
travel information, effective design and delivery strategies of the information. 
5.2 Future research directions 

Despite the insightful results of the study based on the driving simulator experiment data, 
a few additional studies are required to improve illustration of drivers’ behavior in route choice 
context. For example, traveler satisfaction is another critical factor to evaluate his/her own route 
choice decisions so that it can alter their route choices in future. The analysis of traveler satisfaction 
considering the psychological effects of information will be investigated to understand future route 
choice decisions. Moreover, potential placebo effects of real-time travel information will also be 
studied to address a specific situation where only psychological benefits exist without 
improvement in travel time. In future studies, the approach should be extended to quantify the 
inclusive benefits of real-time travel information as another concrete performance measure for 



29 
 

ATIS. Next, the integration of eye-tracker and EEG data can be further used to classify driver 
attitude toward information and identify information characteristics and situational factors that 
lead to drivers’ cognitive overload. To understand and quantify causal relationships between driver 
cognitive states defined by biosensor data under real-time travel information provision, micro-
level driving performance and driver route choice behavior, the statistical modeling approach can 
be used. 
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